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Signi�cance statement

Theoretical linguistics postulates abstract structures that successfully explain

key aspects of language. However, the precise relation between abstract the-

oretical ideas and empirical data from language use is not always apparent.

Here, we propose to empirically test abstract semantic theories through the

lens of probabilistic pragmatic modelling. We consider the historically im-

portant case of quantity words (e.g., ‘some’, ‘all’). Data from a large-scale

production study seem to suggest that quantity words are understood via

prototypes. But based on statistical and empirical model comparison, we show

that a probabilistic pragmatic model that embeds a strict truth-conditional

notion of meaning explains the data just as well as a model that encodes

prototypes into the meaning of quantity words.



Abstract

An in�uential view in philosophy and linguistics equates the meaning of

a sentence to the conditions under which it is true. But it has been argued

that this truth-conditional view is too rigid, and that meaning is inherently

gradient and revolves around prototypes. Neither of these abstract semantic

theories makes direct predictions about quantitative aspects of language use.

Hence, we compare these semantic theories empirically by applying proba-

bilistic pragmatic models as a link function connecting linguistic meaning and

language use. We consider the use of quantity words (e.g., ‘some’, ‘all’) which

are fundamental to human language and thought. Data from a large-scale

production study suggest that quantity words are understood via prototypes.

We formulate and compare computational models based on the two views

on linguistic meaning. These models also take into account cognitive fac-

tors, such as salience and numerosity representation. Statistical and empirical

model comparison show that the truth-conditional model explains the produc-

tion data just as well as the prototype-based model, when the semantics are

complemented by a pragmatic module that encodes probabilistic reasoning

about the listener’s uptake.



Introduction

An in�uential tradition in philosophy equates the meaning of a sentence to its truth

conditions (Frege, 1962; Wittgenstein, 1922). Accordingly, to know what a sentence means

is to know in which circumstances it is true or false. This truth-conditional approach to

meaning has given rise to the �eld of formal semantics, which uses tools from logic and

set theory to formally spell out how the truth-conditional meaning of a sentence is built

up from the meanings of its constituents (Heim & Kratzer, 1998).

Other authors have criticized the truth-conditional approach (Lako�, 1987; Langacker,

1987), drawing upon psychological research that shows that categories are built around

prototypes that exemplify the most important features of a category (Rosch & Mervis,

1975). The typicality of an exemplar is gradient and depends on similarity to prototypes.

The presence of prototype structure is sometimes construed as evidence that category

membership—and consequently truth itself—is a matter of degree and depends on similar-

ity to prototypes. This approach is called Prototype Theory (PT).

There is an important gap between linguistic meaning and language use, especially

from the truth-conditional perspective. For example, many formal semanticists hold

that ‘or’ expresses logical disjunction. However, utterances containing ‘or’ also tend to

imply that the speaker is unsure which disjunct is true (e.g., ‘He is in Amsterdam or

Berlin’). To explain such observations, Grice outlined a theory of pragmatics connecting

meaning and use based on the idea that speakers are rational, i.e., gear their contributions

towards reaching certain conversational goals (Grice, 1975). In the case at hand, a rational

speaker who knows which disjunct is true would simply utter that disjunct (e.g., ‘He is in

Amsterdam’) rather than the disjunction (Sauerland, 2004).

Recently, this type of Gricean reasoning has been formalized within probabilistic

models that make precise predictions about quantitative aspects of language use (Frank



& Goodman, 2012; Franke & Bergen, 2020; Franke & Jäger, 2016; Potts, Lassiter, Levy,

& Frank, 2016; Russell, 2012). Here we leverage these probabilistic pragmatic models to

test semantic theories based on empirical data. With this goal in mind, we focus on the

speci�c case of quantity words, such as ‘some’ and ‘all’.

Quantity words

Quanti�cation is a crucial aspect of human cognition that supports generalization and

underpins the communication of information about frequency and number (Peters &

Westerståhl, 2006; van Deemter, 2010). Indeed, the treatment of quanti�cation is one of the

centerpieces of the truth-conditional approach to meaning, leading to the development of

Generalized Quanti�er Theory (GQT) (Barwise & Cooper, 1981; Montague, 1973).

GQT

GQT formalizes an intuitive approach to the meaning of quantity words in set-theoretic

terms. According to this approach, quanti�ed statements express relations between sets.

More speci�cally, many quantity words—and all of the ones that we are concerned with

here—express thresholds on the intersection between two sets (Bonevac, 2012). For example,

‘Some S are P’ means that the sets S and P denoted by the subject and predicate have at

least one element in common, i.e., |S∩ P| ≥ 1. Other examples of GQ-theoretic de�nitions

are:

(1) a. ‘all’: |S ∩ P| ≥ |S|

b. ‘not all’: |S ∩ P| < |S|

c. ‘no’: |S ∩ P| ≤ 0

d. ‘most’: |S ∩ P| > |S− P|



For convenience, we will refer to |S ∩ P| as the intersection set size, and to |S| as the total

set size.

GQT has enjoyed immense theoretical success, explaining various otherwise puzzling

observations about, e.g., the cognitive complexity of quantity words (Szymanik & Za-

jenkowski, 2010), their order of acquisition (Katsos et al., 2016), the aptitude of people’s

reasoning with quanti�ed sentences (Geurts, 2003), and the distribution of negative po-

larity items like ‘any’ and ‘ever’ (Ladusaw, 1979). At the same time, however, it has been

observed that there is no straightforward connection between the set-theoretic meanings

postulated by GQT and the way people use quantity words, as we will show presently.

Using quantity words

We conducted a large-scale study on the production of quantity words in English (Exp.

1a). Each of 600 participants described 10 displays showing 432 circles which were either

red or black. To describe these displays, participants freely completed the sentence frame

‘___ of the circles are red’. Each display varied the intersection set size, i.e., the number of

red circles. To elicit quantity words that are potentially vague and thus relevant to our

purposes, the displays had a large total set size, thereby likely triggering only approximate

representations of the true intersection set size. Additionally, experimental instructions

discouraged the use of numerical expressions like ‘�fty-two’.

Fig. 1AB visualizes the production probabilities of the 15 most frequently produced

quantity words, all of which were produced 50 times or more, as well as ‘all’ and ‘none’.

‘All’ and ‘none’ were included because they are crucial for communication and historically

salient, even though they were not very frequently produced in the experiment for the

obvious reason that displays with uniformly colored dots occurred infrequently. Taken

together, these 17 quantity words make up 87% of the production data.



In line with earlier interpretation studies (Newstead, Pollard, & Riezebos, 1987; Wall-

sten, Budescu, Rapoport, Zwick, & Forsyth, 1986), the results of Exp. 1 suggest that the

ranges in which quantity words are produced lack clear boundaries and peak in restricted

subintervals of their GQT-meanings. It has been argued that this type of gradience and

focality is fundamentally incongruous with GQT (Newstead, 1988; van Tiel, 2014; Zadeh,

2004)—or even with a bivalent truth-conditional approach to meaning more generally

(Lako�, 1987; Langacker, 1987). Instead, it has been argued that quantity words have

a prototype-based semantics (Newstead, 1988; van Tiel, 2014); e.g., the prototype for

‘most’ may be situated at about 75% of the total set size, with the typicality of a situation

decreasing with the distance from that prototype.

Outline

The goal of this paper is twofold. First, we show how abstract semantic theories can be

compared empirically with data-driven statistical modelling. Second, we show that GQT’s

truth-conditional account of quantity word meaning o�ers an equally compelling account

of quantity word production as a semantics based on prototypes; but only when it is

complemented by a probabilistic theory of language use.

The next section formalizes GQ-theoretic and PT-based semantics of quantity words.

We then describe four speaker models that make probabilistic predictions about quantity

word choices as a function of the underlying semantic theory.

Semantics of quantity words

A lexical meaning function L : M× T → [0, 1] maps each pair of quantity word m and

state t to a truth value in the unit interval. Participants in Exp. 1 were presented with
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Figure 1: A: Density plot showing the distribution of each quantity word over inter-

section set sizes (Exp. 1a). The height of the distribution indicates the production

frequency. B: Barplot showing the production probabilities in each bin of intersection

set sizes. Each bar shows which quantity words were produced in that bin and their

production probability. C: Barplot showing the predicted production probabilities for

each of the four computational models.



displays consisting of 432 circles which were either red or black. There were thus 433

possible intersection set sizes T = {t0, . . . , t432}, i.e., relevant states of the world.

GQT semantics

According to GQT, many quantity words—and all of the ones that we are interested in—

express thresholds on the intersection set size |S∩ P| (Bonevac, 2012). Whether a quantity

word expresses a lower bound, an upper bound, or both can be judged from the inferential

potential in its predicate, i.e., its right monotonicity (hence, simply, ‘monotonicity’).

Quantity words in natural language are either monotone increasing, monotone decreas-

ing, or non-monotone (Barwise & Cooper, 1981). Monotone increasing quantity words

license inferences from sets to supersets; monotone decreasing quantity words from sets

to subsets; non-monotone quantity words license neither type of inference. Thus, ‘all’ is

monotone increasing, and ‘no’ is monotone decreasing, as shown by the inference patterns

below.

(2) a. All guests ate salmon.→ All guests ate �sh.

b. No guest ate �sh.→ No guest ate salmon.

The monotonicity of a quantity word determines the type of threshold that it places on the

intersection set size. Monotone increasing quantity words place a lower bound; monotone

decreasing quantity words place an upper bound. The relation between monotonicity and

meaning for non-monotone quantity words is less straightforward. However, none of the

quantity words in our sample was perceived as non-monotone.

To model the production patterns shown in Fig. 1, we need to make assumptions

about the monotonicity properties of the 17 relevant quantity words. We ground these

assumptions in empirical data (Exp. 2): 120 participants judged the validity of inference



patterns similar to those shown above. Quantity words were classi�ed as non-monotone

if neither argument was accepted more than 50% of the time; otherwise, quantity words

were classi�ed based on whether they clustered with ‘all’ (monotone increasing) or

‘none’ (monotone decreasing). Following these criteria, ‘few’, ‘hardly any’, ‘less than half’,

‘none’, and ‘very few’ were classi�ed as monotone decreasing; all other quantity words as

monotone increasing.

Based on these results, we introduce a GQ-theoretic lexicon LGQ(m, t), which assigns

each pair of quantity word m and intersection set size t the value 1 (true) or 0 (false),

based on the threshold θm denoted by that quantity word

LGQ(m, t) =


1 if m is monotone increasing & t ≥ θm

1 if m is monotone decreasing & t ≤ θm

0 otherwise.

Previous research has shown that people’s intuitions about the meanings of quantity

words often di�er from the textbook de�nitions, even in the case of ‘all’ (Newstead

& Griggs, 1984), where an imprecise or loose reading could be applied (Krifka, 2002).

Therefore, we do not �x the thresholds of quantity words in advance, but treat them as

free variables in our model, which are to be inferred from the data. We use Bayesian

inference to encode a priori expectations informed by linguistic theory about the likely

meanings of quantity words as weakly informative prior distributions over thresholds

(Gelman, Carlin, Stern, & Rubin, 2014). (See SI Appendix for more details.)

PT semantics

PT di�ers from the truth-conditional approach to linguistic meaning in two respects: it

assumes that truth is gradient rather than binary, and it holds that linguistic meaning is



organized around prototypes. Consequently, we formalize a PT-based view on quanti�ca-

tion using fuzzy logic. Where classical logic assumes that sentences must be either true

or false, fuzzy logic holds that the truth value of a sentence may take any value in [0, 1]

(Zadeh, 1983, 2004).

We thus introduce a prototype lexicon LPT that associates quantity words with func-

tions from intersection set sizes to degrees of truth. Each quantity word m has a prototype

pm which is the intersection set size in which the quantity word is maximally true, and a

scaling factor dm which modulates the e�ect of distance from the prototype on degrees of

truth. We assume that degrees of truth decrease exponentially with the quadratic distance

from the prototype, so that the truth value of a quantity word m for intersection set size t

is:

LPT(m, t) = exp

(
−
(

t− pm

dm

)2
)

As before, prototypes pm and scaling factors dm will be treated as free variables in

data-driven Bayesian inference based on weakly informative priors. Fig. 2A visualizes the

meaning of a quantity word in the two types of lexica.

Modelling the production of quantity words

It is commonly assumed that the meanings postulated by semantic theories are part of

language users’ psychology (Lewis, 1970; Partee, 2001). However, usually, these meanings

cannot be observed directly in people’s language use. What is needed, then, is a pragmatic

theory of language use that can embed various semantic theories to produce probabilistic

predictions about the likelihood of production choices under di�erent sets of semantic

assumptions. We argue here that recent probabilistic pragmatic models (Frank & Goodman,
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Figure 2:A: Visualization of the hypothesized lexical meanings of a (monotone increas-
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around p. B: Visualization of the e�ect of factoring in e�ects of approximate number

representation on the production of the quantity words visualized in Fig. 2A.



2012; Franke & Jäger, 2016) can serve as such an extendable empirical link function. Based

on these models, we will be able to infer the most adequate underlying semantics from the

observable behavior in experiments based on their causal role in generating the observed

behavioral choices (Frank & Goodman, 2014; Schöller & Franke, 2017).

In the following we will therefore introduce two kinds of probabilistic speaker func-

tions. The literal speaker preferably produces utterances that are true. The pragmatic

speaker prefers to produce utterances that are both true and informative. We will compare

four models by combining both literal and pragmatic speaker models with GQ-theoretic

and PT-based semantics. Each model additionally includes the possibility that some quan-

tity words are more salient than others, i.e., come to mind more easily and are therefore

more likely to be produced, ceteris paribus. We also factor in imprecision in the represen-

tation of numerosity.

Literal speakers

A natural starting point for modelling the behavior of participants in a task like Exp. 1 is

to assume that, when describing a picture with intersection set size t, participants prefer

to give descriptions with a higher truth value over those with a lower truth value, i.e., a

preference for true over false descriptions or a preference for descriptions of which t is

more prototypical.

To also make room for the idea that not all descriptions come to mind with equal ease,

we include the salience of quantity words as an additional factor. Participants in the exper-

iment had marked preferences for some quantity words over others. For example, ‘most’,

‘the majority’, and ‘more than half’ are often viewed as truth-conditionally equivalent

despite having di�erent conditions of use. Nonetheless, participants used ‘most’ much

more often than ‘more than half’ or ‘the majority’. We assume that this di�erence in



frequency is due to the fact that ‘most’ was more salient, i.e., accessible in the task at hand.

(See SI Appendix for further discussion.) To capture e�ects of di�erential salience, we pair

each quantity word with a salience value PSal(m), which is treated as a free variable.

Combining truth-based and salience-based production preferences, we consider a

simple model of a literal speaker, which serves as a baseline for later comparison:

PSlit(m | t,L) ∝ PSal(m) L(m, t)

Pragmatic speakers

One of the central insights of modern pragmatics is that speakers’ behavior can be

understood, at least in substantial part, as optimal or near-optimal goal-directed action for

the purpose of communicating information (Grice, 1975). On this assumption, speakers

are predicted to preferably produce utterances not just based on how true they are,

but also based on how likely they are to receive the intended interpretation (Frank &

Goodman, 2012; Franke & Jäger, 2016). Consequently, a pragmatic speaker produces

utterances proportionally to how likely they are to convey the intended meaning to a

literally interpreting listener (Llit), while also factoring in salience as before:

PSprag(m | t,L) ∝ PSal(m) PLlit(t | m,L)α, where

PLlit(t | m,L) ∝ L(t, m)

This model implies that speakers prefer, all else equal, (i) true descriptions over

false ones, (ii) informative descriptions over less informative ones, and (iii) more salient

descriptions over less salient ones. The higher the “rationality parameter” α, the more

pronounced is the preference for the optimization of communicative success. (See SI

Appendix for more details.)

The pragmatic speaker rule is rooted in standard Gricean pragmatic theory but also

goes beyond. The preference for informative utterances is reminiscent of how scalar



inferences, such as the inference from ‘some’ to ‘some but not all’, are usually explained

(Horn, 1972). The central idea underlying scalar inferences is that words that stand in an

entailment relation may form lexical scales. For example, ‘all’ unilaterally entails ‘some’,

which delivers the lexical scale 〈some, all〉. Since e�cient speakers are expected to provide

as much information as relevant, an utterance with the weaker scalar word ‘some’ may

imply that the speaker believes that the corresponding sentence with the stronger scalar

word ‘all’ is false.

The pragmatic speaker model formulated here generalizes this type of reasoning by

assuming that words may compete with each other in spontaneous language use even

if they do not stand in a proper entailment relation. For example, consider ‘some’ and

‘few’. These two quantity words do not stand in an entailment relation because both may

be true when the other is false (e.g., ‘few’ is true but ‘some’ is false when t is zero and

‘some’ is true but ‘few’ is false when t equals the total set size). Nonetheless, we propose

that pragmatic speakers may, for some intersection set sizes t, consider both ‘few’ and

‘some’ as viable utterances, and that they prefer whichever utterance promises to be more

reliable in communicating t.

Here, we abstract away from other considerations that may in�uence speakers’ choice

of quantity words. For example, ‘some’ and ‘few’ also di�er in their argumentative direction,

as shown by the following felicity pattern (Ducrot, 1973):

(3) a. Some people liked the food, which is {good / *bad}.

b. Few people liked the food, which is {*good / bad}.

The evaluatively neutral nature of our experimental task makes it intuitively unlikely that

factors such as argumentativity played an important role in our production study.



Imprecise number representation

Participants in Exp. 1 were not told how many circles were red but rather had to estimate

the intersection set size based on the displays. The cognitive module used to estimate

the numerosity of large sets is the Approximate Number System (ANS) (Dehaene, 1997).

The accuracy of ANS estimates decreases as the numerosity to be estimated increases.

This e�ect is a corollary of Weber’s law, which states that the probability of confusing

two stimuli increases with their relative rather than absolute di�erence (Fechner, 1860).

In order to model the accuracy of participants’ estimates of the intersection set size

t, we consider the following simple de�nition of the confusion probability PCf(t′ | t)

of representing the true intersection set size t as t′. Since the visual displays in Exp. 1

were upper-bounded, PCf(t′ | t) is de�ned as the product of the probability PANS(t′ | t)

of maintaining an approximate representation of the number t as t′ and the inverse

probability PANS(432− t | 432− t′). These probabilities, in turn, are speci�ed following

common assumptions in the literature on imprecise representation of number:

PCf(t′ | t) ∝ PANS(t′ | t) PANS(432− t′ | 432− t)

PANS(t′ | t) =
∫ t′+0.5

t′−0.5
Gaussian(x, µ = t, σ = w t)dx

The parameter w stands for Weber’s fraction, which represents participants’ sensitivity

to relative di�erences between intersection set sizes. To prevent the possibility that

di�erent production models leverage the Weber fraction’s power as a free parameter

unduly, we collected independent data to estimate w based on the same kind of stimuli we

used in Exp. 1. To this end, Exp. 3 asked 20 participants to estimate the proportion of red

circles in the displays used in Exp. 1. Each participant provided estimates for 24 displays

using a continuous slider. Based on the results of this experiment, we determined the



maximum likelihood estimate of the Weber fraction, resulting in ŵ = 0.576, and use this

value for all production models reported here. (See SI Appendix for more information.)

Adding imprecise number representation to the previously de�ned speaker models

helps explain gradience in language use. There are certainly other factors that generate

gradience (Krifka, 2002), but adding imprecise number representation is motivated given

the stimuli used in Exp. 1 and su�cient to capture probabilistic gradience in production

behavior. If PS(m | t,L) is a speaker production rule, either literal or pragmatic, the

production probabilities under an approximate representation of the true world state are:

PCF
S (m | t,L) ∝ ∑

t′∈T
PCf(t′ | t) PS(m | t,L)

Fig. 2B illustrates the e�ect of factoring in approximate number representation on

the production of the quantity words. The ANS component asymmetrically increases

the amount of gradience present in the semantics, re�ecting the fact that estimates of

the intersection set size are less accurate in the middle range than around the two ex-

tremes. Note that, implemented in this way, speakers factor in e�ects of imprecise number

representation in an essentially egocentric way, i.e., they do not take into consideration

potential biases in the listener’s estimates of numerosity.

Model comparison

All four models were implemented in Stan (Stan Development Team, 2018) to obtain

samples from the posterior distribution over free parameter values conditioned on data

from Exp. 1a. (See SI Appendix for details). We note that, given the conceptual di�er-

ences between semantic structures, the priors on the semantic parameters (thresholds

for GQ models, prototypes and scaling factors for PT models) are necessarily slightly

di�erent as well. Therefore, the models compared here are, strictly speaking, the Bayesian



Model Log-lik (Exp. 1b) Rating (Exp. 4) (95% CI)

GQ-lit -1717 -2.25 (-3.30, -1.30)

PT-lit -1660 -0.99 (-1.97, -0.00)

GQ-prag -1625 -0.77 (-1.82, 0.14)

PT-prag -1675 -1.41 (-2.37, -0.41)

Table 1: Model comparison results. Posterior expected log-likelihood of the test data

from Exp. 1b (Log-lik) and mean of di�erence between ratings for quantity words

observed in the data and quantity words predicted by trained models (Rating) with

bootstrapped CIs (95% CI).

models including the informative prior speci�cation we used. (See SI Appendix for more

discussion).

Fig. 1C shows the posterior predictive distribution of the models. The �gure suggests

that GQ-lit o�ers a fair approximation of the data from Exp. 1a, but is substantially

worse than the corresponding PT-lit model. However, the di�erence in model �t seems to

disappear once the models are enriched with a pragmatic module. For proper statistical

model comparison, we look at how well each model, after being trained on data Dtrain

from Exp. 1a, is able to predict independent test data Dtest from Exp. 1b, which replicated

Exp. 1a with 200 participants. Table 1 reports the posterior expected log-likelihood of Dtest

for model M with its free parameters ΘM (higher is better):∫
P(ΘM | Dtrain, M) log P(Dtest | ΘM, M) dΘM .

We �nd that GQ-prag o�ered the best �t to the new production data, substantially

better than PT-lit, PT-prag, and ultimately GQ-lit, in that order.



For additional empirical model comparison, we asked 200 participants to evaluate

the predictions of each model (Exp. 4). Participants saw the displays used in Exp. 1, and

adjusted a slider to judge the adequacy of descriptions of the form ‘Q of the dots are red’

for a given intersection set size t. The quantity words Q were either sampled from the

production data of Exp. 1a for t or from the four models’ posterior predictive distribution

for t. The average rating (on a 0–100 scale) for the quantity words from the data was

74.6. Table 1 shows how much lower the quantity words produced by the four models

were rated. The GQ-prag model was the only one whose predictions were not rated as

signi�cantly worse than the data (β = -0.82, SE = 0.45, t = -1.81, p = .07; all other models:

p < .02). (See SI Appendix for details.)

Taken together, these results show that the GQT-based model provides a compelling

account of patterns of gradience and focality in the production of quantity words when

combined with a probabilistic theory of rational communication. Indeed, the pragmatic

GQT-based model is at least as compelling as a more �exible competitor that directly

encodes gradience and focality into the semantics of quantity words.

General discussion

This paper addresses a long-standing debate about the nature of linguistic meaning.

Many philosophers and linguists argue that knowing what a sentence means involves

knowing when it is true and when it is false. However, this truth-conditional approach, and

speci�cally its assumption of bivalence, has been criticized as overly rigid and ignoring

the fact that meaning is inherently gradient and organized around prototypes (Newstead,

1988; Wallsten et al., 1986; Zadeh, 2004).

What makes it challenging to test such semantic theories is that it is di�cult, if not

impossible, to divorce language from the way it is used (Clark, 1996). Hence, rather



than attempting to evaluate semantic theories directly, we evaluated them based on how

well they explain language use when combined with a set of independently justi�ed

linking assumptions that connect meaning and use. We showed that the growing �eld

of probabilistic pragmatics can provide such link functions, thereby leveraging tools and

techniques from probabilistic modelling in the cognitive sciences for the study of abstract

theories of meaning from linguistics (Franke & Bergen, 2020; Potts et al., 2016).

We applied this novel approach to the domain of quantity words (e.g., ‘some’, ‘all’). By

doing so, we showed that the truth-conditional approach to quanti�cation, i.e., Generalized

Quanti�er Theory (GQT), is able to account for gradience and focality in the production

of quantity words just as well as a more �exible prototype-based semantics.

This conclusion ties in with more theoretical concerns that have been voiced about the

foundational ideas of Prototype Theory (Kamp & Partee, 1995; Osherson & Smith, 1981).

While these concerns have caused support for PT to wane, its central tenets (i.e., that

truth is a matter of degree, and that linguistic meaning revolves around prototypes) are

still defended (Hampton, 2007; Novák, 2008). All of these approaches attempt to encode

facts about the way people use language into linguistic meaning. We have shown that a

modular view, whereby language production consists of a semantic module that calculates

the truth-conditional meaning of an utterance, and a pragmatic module that reasons

about the probability that the utterance receives the intended interpretation, can explain

gradience and focalization in production just as well as a PT-based approach. Within

this modular approach, gradience emerges from limitations in perception and rationality,

and prototype structure is an epiphenomenon of the tendency to contrast competing

messages to achieve optimal communication. In the latter respect, the current argument

runs parallel to the debate about the meaning of color words (Gibson et al., 2016).

Our endeavor has an important precursor in research on categorization. Category

theorists have asked whether categories are de�ned on the basis of all-or-none rules or



by means of gradient similarity to prototypes. More recently, it has been shown that the

apparent tension between these two approaches disappears within a Bayesian framework

that allows for varying degrees of certainty about which rules apply in a given situation

(Tenenbaum, 1999). In a similar way, we show that quantity words have crisp meanings but

that gradience may emerge as a consequence of competition between viable messages—as

well as cognitive and perceptual biases.

Our study tested a number of vague quantity words, such as ‘few’ and ‘many’. Vague-

ness is a classical topic of debate in philosophy. Several theories are currently salient.

Both contextualism and epistemicism argue that statements with vague words are always

true or false simpliciter (Kamp, 1981). Others argue that statements with vague words can

have truth values in between 0 and 1 (Goguen, 1969). One argument seemingly in favor of

the latter approach is that there is gradience in the use of vague words. However, we have

shown that it is possible to explain such gradience as a natural by-product of cognitive

limitations in non-linguistic domains—in this case, imprecise number representation.

Recent years have seen a rising interest in probabilistic modelling of language use

(Frank & Goodman, 2012; Franke & Jäger, 2016; Potts et al., 2016; Russell, 2012). This paper

builds on that work and shows how such models can be �exibly enriched to include non-

linguistic cognitive components, such as the Approximate Number System. We conclude

that probabilistic pragmatic modelling can be a strong bridging instrument in future work

to build integrated cognitive models of language use that speak directly to established

linguistic theory.



Materials and methods

The SI Appendix provides more information about the experiments, analyses, and mod-

elling, and can be found alongside the data, analysis �les, and modelling code at https://

osf .io/hsytk/. Exp. 1a received ethical approval from the Stanford Non-Medical IRB (10833).

All other experiments received ethical approval from the IRB of the German Linguistics

Society (DGfS 01.08.2014). Participants received information about their rights and about

the purpose of the study. Afterwards, they gave informed consent.

Exp. 1: Production

600 (Exp. 1a) and 200 (Exp. 1b) participants were drafted on Amazon’s Mechanical Turk

(AMT). Only workers with an IP address from the United States were eligible for partici-

pation. In addition, participants were asked in which language they usually counted, and

were excluded if they did not answer English. (These constraints hold for all experiments.)

Items showed displays containing 432 black or red circles which were randomly scattered

across a 25×36 grid. Participants saw a random selection of 10 displays. At the bottom of

each display, participants were asked ‘How many of the circles are red?’ Participants had

to complete a sentence of the form ‘ are red’ by typing freely into the blank. For the

analyses, we grouped together synonyms. For the purpose of data visualization (Fig. 1BC),

we binned the data into bins consisting of 10 intersection set sizes, except for the �rst and

last bins, which only contained data for intersection set sizes 0 and 432. Moreover, the

second to last bin contained 11 intersection set sizes, also including data for intersection

set size 431.



Exp. 2: Monotonicity

120 participants were drafted on AMT. Based on a pretest (Exp. 2a), 17 predicate pairs 〈P1,

P2〉 were selected such that participants agreed that P1 entailed P2, e.g., 〈play poker, play

cards〉. Using these predicate pairs, two types of arguments were randomly generated for

each quantity word:

(4) a. Q of the people P1.→ Q of the people P2.

b. Q of the people P2.→ Q of the people P1.

Participants indicated whether these arguments were valid. Two annotated examples

illustrated the notion of validity.

Exp. 3: ANS

20 participants were drafted on AMT. Displays were as in Exp. 1. Participants saw a random

display from each of 24 bins, each including 18 intersection set sizes, and estimated the

proportion of red circles by moving a slider.

Exp. 4: Evaluation

200 participants were drafted on AMT. Each saw 20 random displays from Exp. 1. Displays

were described by sentences of the form ‘Q of the circles are red’, where Q was obtained

by �rst sampling an arbitrary number 0, . . . , 432 and then sampling from the posterior

predictive distribution of each model, as well as from the data observed in Exp. 1. We only

tested items where at least two of the sampled expressions di�ered. Participants rated

the adequacy of descriptions by adjusting a slider bar (with endpoints labelled ‘bad’ and

‘good’). Ratings were recalibrated as di�erences from the ratings for the quantity words



sampled from the data. A mixed e�ects linear regression model predicting di�erential

rating on the basis of the source of the quantity word (using the data as reference category)

with random intercepts for participants, quantity words, and intersection set sizes was

the maximal converging model.
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