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Abstract

Languages vary in the way they typically order subject, verb,
and object in transitive sentences. Although all six possible
word orders are attested, there is great variability in the fre-
quency with which they occur in the languages of the world.
Here, we investigate whether this variability is reflected in dif-
ferences in the learnability of the possible word orders. Thus,
we carried out a language learning experiment in which native
English speakers had to learn artificial languages with different
word orders. The results suggest that there is broad correspon-
dence between the typological frequency of different word or-
ders and their learnability, which supports the hypothesis that
there are cognitive and/or communicative factors that are re-
sponsible for the bias in the distribution of word orders. We
further analyse the data using a novel computational model for
simultaneous vocabulary and word order acquisition.

Keywords: syntax; language universal; language learning; ar-
tificial language; communicative efficiency

Introduction

Transitive declarative sentences are sentences that contain a
subject (S), verb (V), and direct object (O). In English, such
sentences typically have SVO word order:

(D) The boy kicked the ball.

However, other languages have different word orders. Indeed,
typological research suggests that all six possible orderings of
S, V, and O occur in the languages of the world.

At the same time, this typological research also indicates
that there is enormous variability in the frequency with which
the possible word orders occur. For example, Dryer (2013) re-
ports that, in a sample of 1,376 languages, 189 lacked a domi-
nant word order. Focusing on the 1,187 remaining languages,
the vast majority were either SVO (488) or SOV (564). The
next most frequent word order was VSO (95). The remain-
ing word orders VOS (25), OVS (11), and OSV (4) were ex-
tremely rare (Haider, 2023; Greenberg, 1963).

The skewed distribution of word orders calls into question
why languages tend to converge on either SVO or SOV word
order. Is this merely a historical accident, caused by the fact
that the first language allegedly had SOV word order (Givon,
1979; Maurits & Griffiths, 2014)? Or do certain word orders
have cognitive and/or communicative benefits that make them
more likely to arise and persist in language evolution?

There are at least two observations that suggest that the
uneven distribution of word orders is not accidental. First,

sign languages generally develop to have SVO or SOV word
order, even if they arise within communities that speak lan-
guages with other word orders (Sandler, Meir, Padden, &
Aronoff, 2005). Second, in experimental settings in which
people have to communicate with gestures, they tend to adopt
an SVO or SOV ordering, even if their spoken language em-
ploys a different word order (Schouwstra & de Swart, 2014;
Goldin-Meadow, So, Ozyurek, & Mylander, 2008; Futrell et
al., 2015).

Both observations indicate that communicators naturally
gravitate towards certain word orders over others, suggesting
that certain word orders have intrinsic benefits. In the litera-
ture, at least three potential benefits have been described.

First, Kemmerer (2012) points out that transitive sentences
prototypically denote a causal chain consisting of an agent
doing something to a patient. Importantly, this causal chain
starts with the agent and ends with the patient. Linguisti-
cally, the agent is usually—though not invariably, cf. e.g.,
passive sentences—referred to by the subject; the patient by
the object. Hence, Kemmerer suggests, a possible reason for
why, in almost all languages, the subject precedes the object
is to mirror the precedence of the agent over the patient in the
causal chain (Comrie, 1989; Greenberg, 1963).

Second, Maurits, Perfors, and Navarro (2010) argue that
languages almost never start transitive sentences with the ob-
ject because object-initial transitive sentences are subopti-
mal in terms of the rate at which information is conveyed.
Based on a corpus analysis, Maurits and colleagues show
that objects tend to carry more information than subjects and
verbs. For example, the object ‘the ball’ is compatible with
a much smaller set of actions (e.g., kicking, throwing, buy-
ing) than the subject ‘the boy’. Hence, in object-initial tran-
sitive sentences, the first constituent carries a lot of informa-
tion. According to Maurits and colleagues, such sentences are
avoided because they violate the uniform information density
hypothesis, which is a universal tendency for languages to
spread information as uniformly as possible across the lin-
guistic signal (Levy, 2005; Jaeger, 2006).

Third, Gibson et al. (2013) argue that a communicative ad-
vantage of SVO word order is that the verb separates the sub-
ject and the object. The increased distance between subject
and object is potentially useful in semantically reversible sen-



tences, such as (2), in which both the subject and object can
fulfill the thematic roles of agent and patient.

2) The boy kicked the girl.

According to Gibson and colleagues, using the verb to sep-
arate the subject from the object is useful when the commu-
nicative channel is noisy. For example, if the addressee fails
to hear the first constituent of (2), they may still infer that ‘the
girl’ is the object, whereas, if the sentence had SOV word or-
der, it would be ambiguous between subject and object.

If certain word orders indeed have cognitive and/or com-
municative benefits, we may expect that language learners
are biased in favour of such word orders when learning a new
language, over and above any biases introduced by their na-
tive language. In this study, we investigate whether there are
such differences in learnability using an artificial language
learning task. In particular, we hypothesise that there is a
correspondence between the ease of learning a language with
a particular word order and the typological frequency of this
word order in the languages of the world (see Culbertson,
2012; Tily, Frank, & Jaeger, 2011, for similar endeavours).

In the next section, we describe the artificial language
learning experiment in more detail. Afterwards, we describe
a computational model of joint vocabulary and word order
learning to obtain a more direct insight into language learn-
ers’ prior expectations about word order.

Experiment

In our experiment, participants had to learn an artificial lan-
guage called Aclapa. The vocabulary of Aclapa comprised
seven monosyllabic words that were randomly paired with
seven meanings: four entities (square, triangle, circle, heart)
and three actions (punching, greeting, photographing).
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Which image does the sentence describe?

(This is trial 11/200)

Figure 1: Example trial from the experiment.

The words in Aclapa were used to form three-word tran-
sitive sentences. For example, the sentence in Fig. 1 might
express the proposition that the triangle punches the circle,
as illustrated in the upper left corner. Importantly, the order

of subject, verb, and object was varied between participants
across all six possible word orders.

Participants learned Aclapa by means of a picture selec-
tion task. On each trial, they saw a sentence in Aclapa and
four pictures (Fig. 1). They had to click on the picture that
matched the meaning of the sentence. Afterwards, they re-
ceived feedback on whether their response was correct, and,
if not, what the correct response was. In this way, participants
gradually learned Aclapa by trial-and-error.

To infer participants’ prior expectations about the word or-
der of Aclapa, we statistically compared the average number
of correct responses for each word order.! Here, we assume
that, if participants are biased towards certain word orders,
they will learn those word orders more easily than others,
which will result in a higher number of correct responses.

Obviously, participants will have a strong bias in favour
of the word order in their native language. Since we tested
native English speakers, participants are expected to have a
strong bias for SVO, which is the typical word order in En-
glish transitive sentences. Consequently, our primary inter-
est is in whether there are differences in learnability between
the remaining five word orders. Recall that, typologically,
VOS, OSV, and OVS are highly infrequent. Hence, we may
expect that participants have more difficulties learning lan-
guages with those word orders when compared to the more
commonplace word orders SOV and, to a lesser extent, VSO.

Following this traditional statistical analysis, we seek to
obtain a more direct insight into participants’ prior expecta-
tions about the word order of Aclapa using computational
modelling. Thus, we will define a computational model
of joint vocabulary and word order learning, based on ear-
lier work by Maurits, Perfors, and Navarro (2009), which
we use to obtain a quantitative estimate of participants’ pre-
experiment initial weights (or “priors”) over word orders.

Methods
Participants

386 participants were recruited on Prolific (mean age: 34,
standard deviation: 11, range: 18-59; 221 female, 159 male,
and 6 other). Participants were randomly assigned to one of
the six possible word orders (SVO, SOV, VSO, VOS, OSV,
or OVS). There were thus 64 participants in each word order
condition, except for SVO, which had 66 participants because
of a technical issue.

Materials and procedure

The vocabulary of Aclapa consisted of seven words with
seven meanings. The words were taken from the artificial
language Brocanto2 (Morgan-Short, Steinhauer, Sanz, & Ull-
man, 2012) and were simple monosyllabic strings: ‘teck’,

'As clarified below, the participants are not modelled as
Bayesian reasoner. Therefore, by ‘prior’ we will mean the initial
expectation over word orders in the context of the belief updating
mechanism described below, rather than the initial probabilities in
the context of Bayesian update.



‘neep’, ‘blom’, ‘vode’, ‘klin’, ‘praz’, and ‘yabe’. The possi-
ble meanings comprised four types of entities (square, trian-
gle, circle, heart) and three types of actions (punching, greet-
ing, photographing). For each participant, a vocabulary was
generated by randomly pairing words with meanings.

Based on the vocabulary and word order, 200 three-word
transitive sentences were randomly generated, with the con-
straint that the subject was never the same as the object. Each
of these sentences was paired with four images. The first im-
age depicted the correct meaning of the sentence. The second
image depicted the same agent and patient as the first, but
showed a different action. The third and fourth images de-
picted at least one different entity (the agent, the patient, or
both). The third image depicted the same action as the first
image; the fourth image the same action as the second image.
In this way, participants could not deduce the correct image
on the basis of the configuration of the images. The four im-
ages were shown in a 2x2 grid in random order.

Images randomly showed either the agent on the left and
the patient on the right, or the patient on the left and the agent
on the right. In this way, the images were unbiased towards
either subject-first or object-first word orders.

In the instructions, participants were introduced to the four
types of entities and three types of actions. In addition, they
were explicitly instructed that the order in which the entities
were ordered in the images (i.e., agent on the left and patient
on the right, or vice versa) did not influence how these images
were described linguistically.

Each trial showed a sentence with four pictures, as de-
scribed above. Participants were instructed to click on the
picture that matched the meaning of the sentence. Partici-
pants received feedback after every trial. If they had answered
incorrectly, they were shown what the correct answer was.
The duration of the feedback ranged from 500 milliseconds
to 4 seconds, depending on the stage of the experiment (feed-
back duration was longer during the first 25 trials to facilitate
learning) and the number of correct responses (feedback du-
ration became incrementally shorter after one and four correct
responses in arow). In this way, participants were encouraged
to do their best to learn Aclapa to speed up the experiment.

The experiment was hosted online on the now-defunct Ibex
Farm. A port of the experiment can be accessed via the
PCIbex Farm (Zehr & Schwarz, 2018) using the following
link: https://farm.pcibex.net/p/ynpTam/.

Data treatment

For our analysis, we focus on participants whose performance
improved during the experiment. Concretely, we determined,
for each participant, whether their performance in the second
half of the experiment was significantly above chance (i.e.,
25%). For this analysis, we used a one-sample Z-test. Par-
ticipants with a Z-value below 1.64, corresponding to p = .1,
were removed from the analysis.

In total, 61 participants were removed. These participants
included both participants for whom the experiment was too
difficult, and participants who did not seriously engage with

the experiment. The number of removed participants did not
significantly differ across word orders (SVO: 7, SOV: 13,
VSO: 10, VOS: 15, OVS: 6, OSV: 10), as shown by a chi-
squared test (X2(5) =7.1, p=.21). Hence, there were no clear
effects of word order biases on the number of non-learners.

In addition, one participant was removed because they in-
dicated that their native language was not English.

Results

Fig. 2 shows the number of correct responses in each of
the word order conditions. The mean number of correct re-
sponses was 139 out of 200 (range: 54—194, standard devia-
tion: 39). Comparing the different word order conditions, the
mean number of correct responses was the highest for SVO
(161), and the lowest for OSV (129), VOS (129), and OVS
(131). The means for SOV (143) and VSO (140) were in be-

tween these extremes.
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Figure 2: Dotplot showing number of correct responses in
each word order condition. The red dot indicates the mean,;
the red line the standard deviation.

To analyse whether these means were statistically differ-
ent, we constructed a Poisson generalised linear regression
model predicting the number of correct responses based on
word order. This analysis was implemented with the ‘glm()’
function in R (R Core Team, 2023). Post-hoc pairwise com-
parisons were carried out using the ‘glht()’ function from
the ‘multcomp’ package, which implements Tukey’s method
(Hothorn, Bretz, & Westfall, 2008).

Pairwise comparisons indicated that the mean number of
correct responses was significantly higher for SVO than for
all other word orders (all p’s < .001). This observation con-
firms our conjecture that participants have a strong bias in
favour of the canonical word order in their native language.
In addition, the mean number of correct responses was sig-
nificantly higher for SOV and VSO than for VOS, OSV, and
OVS (all p’s < .001). None of the other comparisons were
statistically significant (all p’s > .89).

In summary, the results of the experiment suggest the fol-
lowing preference ordering: SVO > {SOV, VSO} > {VOS,
OSV, OVS}. Recall that VOS, OSV, and OVS were also ty-
pologically the least frequent word orders. Hence, our re-
sults suggest that there is a broad correspondence between the



learnability of word orders and their typological frequency,
which, in turn, is in line with the idea that there are cogni-
tive and/or communicative motivations underlying the uneven
distribution of word orders in the languages of the world.

In this analysis, we took the number of correct responses
as a proxy for participants’ prior expectations about the word
order of Aclapa. In the next section, we use computational
modelling to try and obtain a more direct insight into partici-
pants’ prior expectations.

Cognitive model of language learning

In this section, we propose a computational model of partici-
pants’ learning process and their behaviour in the experiment,
which we use below for model-based statistical analysis of
the experimental data. This model takes inspiration from an
earlier model of joint vocabulary and word order learning put
forward by Maurits et al. (2010). However, our model sub-
stantially differs from that earlier model both conceptually
and in terms of implementation.

At each timestep, the input to the model comprises, on the
one hand, an utterance U consisting of three words uy, us,
and u3, and, on the other hand, three distractor images and
a target image T, which consists of three elements: an agent
t4, an action/event tg, and a patient zp. The model infers a
distribution over languages based on these data, and guesses
the target image. The model thus has access to the same in-
formation as participants in the experiment; in particular, the
model does not have access to the true word order, unlike the
linear model reported above.

The model has two components. First, it contains a model
of the agent’s beliefs about the language and how they are
updated in response to new observations. Second, it contains
a model of image selection, which determines the probability
that participants select each image given the utterance and
the current beliefs about the language. In what follows, we
describe these two components in turn.

Beliefs about the language

Each possible language £ can be fully specified by two com-
ponents. First, an interpretation function /, which associates
each word with exactly one of the seven possible meanings
(four entities and three actions/events). Since we assume un-
ambiguous vocabularies, there are (7! =)5,040 possible inter-
pretation functions. Second, a word order ® of the six possi-
ble word orders. Since the two components are independent,
there is a total of (5,040 x 6 =) 30,240 possible languages.
Participants maintain a distribution over the possible lan-
guages. In our model, they do so by storing weights that
encode the relative probability of each language. One op-
tion would be to store weights for each possible I. However,
in order to make the computations feasible, we assume a sim-
pler representation that only encodes association strengths be-
tween words and meanings, which we write as ‘(word, refer-
ent)’. This representation requires only (7 x 7 =)49 weights.
In addition, we assume that participants keep six weights

for the six possible word orders. Taken together, this im-
plies that, at any timestep, participants need to keep track
of (494 6 =)55 weights, which jointly encode a distribution
over the possible languages.

Learning is modelled as an update of these weights upon
observing the target scene. On each trial, the vocabulary
weights are updated as follows. First, for each word u in
the sentence and element ¢ in the target image 7, we sum
the weights of the word orders in which u refers to ¢. For in-
stance, if 1] is ‘praz’ and t4 is a triangle, the value for (‘praz’,
triangle) is the sum of the weights for SVO and SOV, since
these are the word orders in which the subject (referring to
the agent) is in sentence-initial position. Then, we multiply
this quantity by a learning rate parameter v, add it to the cur-
rent association strength for all referents in 7" and words in U,
and renormalise the association strengths to obtain, for each
signal, a distribution over meanings.

On each trial, the word order weights are updated as fol-
lows. First, we compute the total weight of the lexical asso-
ciations that are compatible with the observation (i.e., the ut-
terance and target image) for each word order. For instance,
for word order SVO, this is the product of the association
strengths of (u1,24), (u2,7g), and (u3,#p), which intuitively
corresponds to the joint probability of the meanings of the
three words in the observation assuming SVO. Then, we mul-
tiply this by 7, add it to the respective previous word order
weights, and renormalise the word order weights vector.

Image selection

On each trial, given the observed utterance U the agent
chooses an image / from four available images, based on
their current beliefs encoded in the weights. Call ry,,)
the referent within an image I that word order ® assigns to
word u;. For example, in Figure 1, r(svo toplefi,u,) = triangle.
The probability of choosing each image I given U is com-
puted as follows. First, for each word order ® we compute
(ul,r(m!l_’u”) X (”27r(m,l.u2)) X (ug,r(m,[m)). Then, we multi-
ply each of these by the weight of the corresponding word
order and we sum the resulting value. This provides a mea-
sure of the relative probability that U refers to each image
given the current weights. We use resulting vector as weight
parameter for a softmax distribution with temperature param-
eter o, and sample an image from it.

Model-based statistical analysis

Since the goal of the statistical analysis is to recover the par-
ticipants’ initial weights at the start of the experiment, we
leave the prior preferences over word orders as a variable to
be estimated from the data. We assume a uniform prior for
the interpretation functions, corresponding to the assumption
that participants do not associate any words with particular
meanings at the beginning of the experiment.

The statistical model has to find a distribution for the
variables defining participant behaviour. First, the starting
weights for the six possible word orders, representing partici-
pants’ prior word order biases. Second, the learning weight 7.



Third, the o parameter encoding the noisiness in participants’
responses given their underlying beliefs.

We fit three models to the data. First, a hierarchical
model with partial pooling for participants’ word order prior
preferences. In this model, there is a population-level vari-
able I' ~ Gamma(o = 5, = 2), which informs the partici-
pants’ prior expectations over word order probabilities p ~
Dirichlet(ot =T'). Second, a uniform prior model with uni-
form word order prior preferences across participants. Third,
a pooled model with completely pooled word order prior pref-
erences, where all participants have the same preference pa-
rameter with prior distribution Dirichlet(ac = 1). Across all
three models, ¥ was unpooled with a Gamma(o = 8,3 = 15)
distribution for each participant, and o was unpooled with an
Exponential(A = 0.5) distribution for each participant.

For all models, the information about participants’ param-
eters comes from their choice of scene on each trial. Since
the decision for trial i depends only on observations for trials
J < i, the model needs to keep track of the distribution over
languages of each participant on each trial. In other words, to
predict participants’ behaviour we need to keep track of the
whole learning trajectory over the experiment.

In order to approximate the posterior distribution over the
unknown parameters, we used HMC sampling with the soft-
ware package PyMC(v.5). For the hierarchical model and
the uniform prior model, we took 1000 samples (with a
1000 samples tuning phase) from 4 chains, for a total of
4000 samples. Unfortunately, the traces show signs of non-
convergence for the hierarchical model. Hence, the results
should be interpreted with caution.? For the pooled model, we
took 500 samples (with a 1000 samples tuning phase) from 16
chains, for a total of 8000 samples.
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Figure 3: Prior predictive checks for associative model with
100 trials and 500 participants. Light blue lines display the
probability of the true word order for each simulated partici-
pant. Red line displays a Bayesian baseline.

Fig. 3 shows prior predictive samples for the hierarchical
model for a single simulated experiment with 500 participants
and 100 trials. As the blue line shows, participants are able
to recover the true word order, but there is variation in how
fast they do so depending on their initial prior for the true
word order and their learning weight. We can therefore expect

2]t is not practically possible to run more extensive sampling; the
runs we present here took 1000 hours for each chain.

the statistical model to attribute the variability in accuracy
between participants to their prior preferences, as well as their
learning rate 'y and response noisiness O.

The yellow line in Fig. 3 shows how participants’ knowl-
edge is reflected in their task performance. Even participants
who correctly understood the language can make mistakes be-
cause of the production noise parameter. When participants
behave consistently with their predicted knowledge given
their observations and learning weight, their noise parame-
ter will have a low estimate, and therefore their behaviour is
assumed to be a stronger signal of the other parameters (e.g.,
the word order priors). The prior predictions of our model
are contrasted with a simulated experiment with 50 perfect
Bayesian learners (red line). In this case, participants acquire
the true language very quickly, and the variation across par-
ticipants is more limited.
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Figure 4: Posterior predictive checks for associative model
(8000 simulated experiments). The top plot shows the distri-
bution of average accuracy across participants and trials for
the posterior predictive samples from the three models, as
well as the real experimental data. The bottom plots show
the mean accuracy by trial and word order condition for the
three models and the real data.

Fig. 4 shows posterior predictive checks for the average
accuracy of all participants (top plot) and split by word order
conditions (bottom plots). While posterior samples from the
hierarchical model resemble the accuracy of the real partici-
pants more closely, all models substantially underestimate the
mean accuracy of real participants (red line).

The bottom plots of Fig. 4 reveal where the models fail.
While all models capture the main pattern of increasing mean
accuracy in the first half of the experiment and subsequent
stabilization at less-than-perfect accuracy, they underestimate
mean participant accuracy for the early trials, across all word
order conditions. This could be because of the factorisation
of the language space used in the models or from noisy par-
ticipants having excessive influence in the posterior estimate.
The bottom plots also show that the hierarchical model does
the best job at fitting the early trial accuracy levels.



While the hierarchical model failed to converge, the pooled
model gives us an estimate of the posterior over word or-
ders that can be inferred from the data assuming the learning
model we described above. Specifically, Table 1 reports the
posterior probability that each word order has a greater prior
probability than each other word order for participants at the
beginning of the experiment.

The posterior is uncertain of most comparisons, except for
three cases. First, SVO has a credibly higher prior than most
other orders. This is the clearest signal from the data, and
is in line with what we expect given that we tested native
English speakers. Second, and more surprisingly, both SOV
and VSO are credibly lower than OVS, and, third, VOS is
credibly lower than OSV.

SVO SOV VSO VOS OSV
SOV 0.837
VSO 0.821 0.321
VOS 1.000 0.466 0.485
OSV  1.000 0.405 0422 0.041
OovS 0.759 0.013 0.035 0.443 0.507

Table 1: Comparison of posterior probability that participants
at the beginning of the experiment assigned a greater prior
probability to the column word order than the row word order.

The results of the pooled model prima facie contradict the
typological data and the linear regression results discussed
earlier. While the latter results were broadly aligned with the
typological data (i.e., a preference ordering of SVO > {SOV,
VSO} > {VOS, OVS, OSV}), the results of the computa-
tional modelling exercise are less clear cut, including a sur-
prising higher estimated prior for OVS than SOV and VSO.

In the next section, we offer an explanation for this dis-
crepancy. However, it is also important to emphasise that the
modelling results should be interpreted with caution. First,
the posterior predictive checks tell us that the model is fail-
ing to capture some crucial aspect of participants’ learning
curve. Second, the hierarchical model, which best captured
participants’ performance, did not converge despite substan-
tial effort. Since the participants’ starting word order priors
only subtly show up in the data, it is likely that a better cog-
nitive model is needed to make reliable inferences. Nonethe-
less, since our model could capture at least some important
features of participants’ behaviour in the task, we believe it
provides a promising first approximation.

General discussion

The languages of the world vary in the way they typically
order subject, verb, and object in transitive sentences. How-
ever, the frequency of the possible word orders is extremely
skewed: most languages have SVO or SOV word order, a few
have VSO, and almost none have VOS, OSV, or OVS.

Here, we used an artificial language learning paradigm to
experimentally investigate whether languages with less fre-

quent word orders are also more difficult to learn, which
would support the idea that there are cognitive and/or com-
municative biases for certain word orders.

Looking at participants’ accuracy throughout the experi-
ment, we confirmed that there was a broad correspondence
between learnability and typological frequency: SVO had the
highest accuracy, followed by SOV and VSO, followed by
VOS, OSV, and OVS.

We further analysed the results using a computational
model of language learning to gauge participants’ prior ex-
pectations of the word order more directly. The results of the
latter analysis were more difficult to interpret: although we
confirmed the bias for SVO, we also observed a bias for OVS
over SOV and VSO.

Although there are important technical reasons for being
cautious of the latter finding, we briefly consider a possi-
ble reason for why the model inferred a bias towards OVS.
Strategically, participants might learn the artificial language
by first concentrating on learning the verbs. OVS mirrors the
SVO order of participants’ native language in having the verb
in second position. Once the verb is identified, participants’
accuracy increases to 50%, since there are always only two
images that display the correct action. Indeed, it may be the
case that some participants did not go beyond this stage, and
thus failed to learn the meanings of the other words. If so,
their behaviour is ambiguous between a bias for SVO and
OVS. We aim to explore this possibility in future work.

In our analysis, we considered only simple effects of na-
tive language, such that participants find it easier to learn lan-
guages with the same word order as their native language.
However, it is conceivable that the native language bias is
more complex, such that, e.g., people also find it easier to
learn languages with a word order that is similar to their na-
tive language, according to some suitable metric of similarity
(e.g., the number of arguments that are in the same position).
In order to investigate this possibility, it may be necessary to
test participants with a native language that is not SVO. This
would also allow us to distinguish the influence of L1 from
universal preferences for certain word orders.

In sum, we have provided tentative evidence for an impor-
tant parallel between learnability and typological frequency,
which provides further evidence that there are deep-lying
cognitive and/or communicative reasons for universal struc-
tural tendencies in the languages of the world.
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